An Introduction to Weather Modification in West Texas

JONATHAN A. JENNINGS

West Texas Weather Modification Association, San Angelo, TX

Sonora Water Conference, 18 April 2013 – Sonora, Texas

What to expect:

- WTWMA and TWMA target areas
- Texas Climatology
- Purpose
- Methodology
- Examples
- Analysis
- Benefits
- Ongoing/future work

WTWMA Target Area

- Covers 7 ½ Counties in West Texas
- •Total area covers 6.4 million acres
- Based out of San Angelo,
 TX at San Angelo Regional
 Airport

TWMA Target Areas

Programs in South Texas, Far
 West Texas and into the Texas
 Panhandle

• Focus is on areas where rainfall is limited compared to parts of East Texas.

- Covers 36 Counties in Texas
- Area covered in 22.7 million acres

Quick look at Texas Climatology

Texas Summers

Why modify the weather?

- Lack of Rain!
- Demand for water increases while the supply is decreasing
- Clouds in Texas are very vulnerable to aerosols
 Dust, smoke, sulfate, etc.
- Texas is very susceptible to drought
- ENSO conditions impact Texas more so than any other state in terms of changing weather patterns

Why continued:

- Least expensive way to increase water supplies for:
 - Drinking water
 - Irrigation
- While also...
 - Reducing the amount of irrigation needed
 - Fill area lakes, rivers and reservoirs
 - Aquifer Recharge

Methodology

- Current program operations are built on a series of research conducted in the state of Texas.
 - HIPLEX (70's)
 - Data Collection
 - SWCP (80's)
 - Randomized cloud seeding experiment from Big Spring to San Angelo
 - TEXARC (90's)
 - Another randomized cloud seeding experiment in San Angelo
 - SPECTRA (00's)
 - Cloud Sampling in the Texas Panhandle
- Target convective thunderstorms with good vertical depth during "VFR" flight conditions

Methodology

- Base seeding via aircraft using two different type of flares
 - Glaciogenic Flares (Silver lodide)
 - Hygroscopic Flares (Calcium Chloride)
- Rely on inflow at the cloud base to transport material into the cloud

Why Silver Iodide?

- Glaciogenic seeding is used in clouds that have great vertical depth
- Super cooled water within the cloud struggles to freeze
- Silver lodide closely resembles the structure of an ice crystal.
- Upon contact, super cooled water freezes
 - Also serves as hail suppression.

Why Calcium Chloride?

- Increases the number clouds we can target.
- Hygroscopic Seeding introduces larger cloud condensation nuclei into a cloud
- Deliquescence Relative Humidity of 65%
- Larger Droplets able to freeze
- Fracturing of frozen, larger ice crystals also severs as hail suppression

How do we know if clouds need to be seeded?

- For Glaciogenic Seeding
 - Cores of higher dBZ stuck in the middle portion of the cloud (above the freezing level)
- For Hygroscopic Seeding
 - Index of Coalescence Activity
 - Warm Cloud Depths
 - Cloud Base Heights
 - Radar Signatures
- For "dual-seeding"
 - If the criteria is met for Hygroscopic Seeding but also has a higher dBZ core above the freezing level

How do we know if clouds need to be seeded?

- Glaciogenic Seeding
 - Radar Cross Section showing a core of higher dBZ values higher then the freezing level

How do we know if clouds need to be seeded?

- Hygroscopic Seeding
 - Higher then normal cloud bases
 - Thin warm cloud depths (cloud base – freezing level)
 - Lack of precipitation falling out of congested cloud

Example

Second Example

Analysis

- Conducted by Dr. Arquimedes Ruiz-Columbè
- Began analysis in 2001 using TITAN analysis package
- Starting in 2004 the TWMA began using radar feed from NWS WSR-88D provided by Weather Decision Technologies.
 - Data before 2004 will not be included in totals or averages presented today

Analysis

9-Year Acre-Feet Increases for the WTWMA Target area

- Average increase of roughly 1.35 million acre-feet across the WTWMA target area
- This translates to roughly a 2.4" increase of precipitation across the WTWMA target area
- This leads to a 15% annual increase in preciptiaton

Analysis for the entire TWMA

Increases found for TWMA Seeding Operations from 2004-2011 (acre-feet)

- Average of 3.4 million acre-feet of increases.
- This translates to 1.45" annually (12% increase across all target areas in Texas)

2004-2012 Precipitation Flux for Control Clouds

Credit: Dr. Arquimedes Ruiz, TTU

2004-2012 Precipitation Flux Comparisons for Control and Seeded Clouds

Credit: Dr. Arquimedes Ruiz, TTU

Percent of Normal (outside target area)

City (County)	Normal	9-Year Average	Percent of Normal
McCamey, TX (Upton)	15.14"	13.59"	89%
Sheffield, TX (Pecos)	15.54"	14.72"	95%
Midland, TX (Midland)	14.48"	11.89"	82%
Midland 4NE, TX (Midland)	14.80"	11.45"	77%
Big Spring, TX (Howard)	19.63"	12.26"	66%
Snyder, TX (Scurry)	22.70"	18.54"	81%
Abilene, TX (Taylor)	24.82"	22.75″	91%
Outside Area Average	18.15"	15.02 ″	83%

Percent of Normal (within target area)

City (County)	Normal	9-Year Average	Percent of Normal
Eldorado, TX (Schleicher)	22.40"	20.98"	93%
Sterling City, TX (Sterling)	19.50"	21.08"	108%
Big Lake, TX (Reagan)	16.61"	17.67"	104%
San Angelo, TX (Tom Green)	21.25"	21.83"	103%
Ozona, TX (Crockett)	19.00"	18.97"	99%
Sonora, TX (Sutton)	22.40"	21.15"	94%
Cope Ranch (NE Reagan)	18.27"	21.04"	115%
Lees (NE Glasscock)	19.49"	20.60"	106%
Area Average	19.69 "	20.01"	102%

• Impressive considering the most intense 1 year drought on record (2011) where most areas were 50% of normal, if not worse.

Percent of Normal (cont.)

City (County)	9-Year Avg.	Minus Wx Mod Activity	New Total	New Percent of Normal
Eldorado, TX (Schleicher)	20.98"	-2.29"	18.69"	83%
Sterling City, TX (Sterling)	21.08"	-2.89"	18.19"	93%
Big Lake, TX (Reagan)	17.67"	-2.72″	15.60"	92%
San Angelo, TX (Tom Green)	21.83"	-3.01"	18.82"	88%
Ozona, TX (Crockett)	18.97"	-1.53"	17.44"	92%
Sonora, TX (Sutton)	21.15"	-1.51"	19.64"	88%
Cope Ranch (NE Reagan)	21.04"	-2.72"	18.32"	100%
Lees (NE Glasscock)	20.60"	-2.53"	18.07"	92%
Area Average	20.01"	-2.4"	17.61"	89%

Benefits (J.L. Johnson, 2001)

- Texas A&M Conducted a Benefit-Cost Analysis of the WCTWMA (Abilene) based on 1 addition inch of precipitation
- Benefits Included:
 - Reduction in Irrigation by 6.5%
 - Increased Agricultural Production by ~\$7 million
 - Decreased surface and groundwater consumption
 - Increased reservoir levels
 - Increased lake and river levels
 - Replenishment of Aquifers
 - Increased and higher quality forage for wildlife

Benefits (Wyatt, Carver 1997)

- 1" of precipitation on a timely basis on the four major crops grown in the High Plains
 Underground Water Conservation District has a market value of \$81 million, with a region
 economic impact of \$283 million.
 - Cotton > \$34/acre
 - Corn > \$18/acre
 - Grain Sorghum > \$10/acre
 - Wheat > \$20/acre

Current and Future Projects

- Climate Impacts on the Physical Properties of Clouds in Texas
 - Ongoing for all programs
 - In cooperation with NCAR
- A 5-Year Synoptic Climatology of Weather Modification Operations in West Texas using the Miller's Guide [TR-200] Classification Scheme
 - Ongoing for the WTWMA
 - Attempting to link upper level patterns with seeding activity
- Cloud Seeding Effectiveness using the Hydrometeor Classification from the KSJT WSR-88DDP
 - Scheduled to start this summer
 - Attempting to see changes in the physical properties of clouds post seeding
- A Conceptual Model for Hygroscopic Seeding in Texas
 - Build a model similar to the current model we have for glaciogenic seeding

Questions?

• Thank You!

Jonathan A. Jennings
 – meteorologist@wtwma.com

http://www.wtwma.com

